©Joyent

Debugging under fire
Keeping your head when
systems have lost their mind

Bryan Cantrill
CTO

bryan@joyent.com
@bcantrill

mailto:rod@joyent.com?subject=

The genesis of an outage ©Joyent

[20:05:33] <Operator-1> I am gonna reboot all empty RB's shortly here, just getting the list right now
[20:07:57] <Operator-2> you let me know when it ti s a go and I will do it towards the end of the shift
so you have a few hours

[20:14:08] <Operator-3> uh

[20:14:13] <Operator-3> us-east-1 is being rebooted

[20:14:17] <Operator-3> ?

[20:14:30] <Operator-4> 7?7

[20:14:39] <Operator-3> Broadcast Message from root (???) on headnode Tue May 27 20:13:53...
THE SYSTEM headnode IS BEING SHUT DOWN NOW ! !'!

Log off now or risk your files being damaged

[20:14:54] <Engineer-1> wtf

[20:14:54] <bot> the case that blows this fucker up is pushing large files.

[20:15:11] <Operator-5> what? :o

[20:15:15] <Engineer-1> please don't be me, please don't be me, please don't be me

“Please don’t be me, please don’t be me” ©Joyent

[20:16:09] <Operator-1> it 1s me

[20:16:31] <Engineer-1> deliberate or not?

[20:16:39] <Operator-1> accident

[20:16:49] <Operator-1> I ewas rebooting an rb

20:16:52] <Engineer-1> ok, whew

20:16:53] <Operator-1> forgot to put -n

[20:17:02] <Operator-1> I fucked up

[20:17:03] <Operator-1> I am sorry!

[20:17:10] <Operator-1> I truly truly sorry

[20:17:12] <Operator-5> Operator-1: so you got just the headnode, or you got all of east1?
[20:17:39] <Operator-1> so I did this:

[20:17:39] <Operator-1> sdc-oneachnode redacted

[20:18:32] <Support-Personnel-1> so is all of East going to reboot?
[20:18:32] <Engineer-2> you just rebooted all of us-east-1.

“...doesn’t begin to describe it” ©Joyent

[20:18:32] <Engineer-2> you just rebooted all of us-east-1.

20:18:43] <Support-Personnel-2> whee

20:18:44] <Engineer-1> yes

[20:18:48] <Support-Personnel-1> need to know what the impact is here... ok

[20:18:49] <Operator-5> WHEE!

[20:18:59] <Operator-6> fuck

[20:19:10] <Engineer-2> Support-Personnel-1: every customer intsance is about to go down.
[20:19:10] <Bryan> "Fuck" doesn't begin to describe it.

“WHEE!”

The R Register’

Biting the hand that feeds IT

ﬂ DATA CENTER SOFTWARE SECURITY TRANSFORMATION DEVOPS BUSINESS PERSONALTECH SCIENCE EMERGENTTECH BOOTNOTES Q

Data Center » Cloud @& 95
Fat-fingered admin downs entire Joyent data
center

Cloud operator now home to most mortified sysadmin in the USA

“Fat-finger”?

©Joyent

* Not just a “fat-finger”; even this relatively simple failure reflected
deeper complexities:

[20:19:50]
Operator-1
[20:20:42]

120:21:47

[20:21:51

[20:21:53

20:22:14

20:22:14]

[20:22:23

<Operator-5> this 1s gonna need a postmortem - 1've almost done what
just did a *number* of times.

<Operator-5> Operator-1: don't stress, we work on recovery now.
<Operator-5> interestingly 1 don't see any alarms for other hosts in east] yet.
<Operator-5> and by now 1 should be seeing some.
<Operator-1> neither do I

<Bryan> Your alarms probably depend on some nodes in us-east-1 being up.
<Support-Personnel-1> yeah A
<Bryan> Tweets are coming in.

* QOutage was instructive — and lucky — on many levels...

It could have been much worse! wJoyent

* The (open source!) software stack that we have developed to
run our public cloud, Triton, is a complicated distributed system

» Compute nodes are PXE booted from the headnode with a
RAM-resident platform image

* |t seemed entire conceivable that the services needed to boot

compute nodes would not be able to start because a compute
node could not boot...

* This was a condition we had tested, but at nowhere near the
scale — this was a failure that we hadn’t anticipated!

How did we get here? wJoyent

» Software is increasingly delivered as part of a service

» Software configuration, deployment and management is
increasingly automated

* But automation is not total: humans are still in the loop, even
If only developing software

* Semi-automated systems are fraught with peril: the arrogance
and power of automation — but with human fallibility

uman fallibility in semi-automated systems @ Joyent

~
— p
l-.."‘

Human fallibility in semi-automated systems ©@Joyent

Summary of the Amazon S3 Service Disruption in the
Northern Virginia (US-EAST-1) Region

We'd like to give you some additional information about the service disruption that occurred in the Northern Virginia
(US-EAST-1) Region on the morning of February 28th. The Amazon Simple Storage Service (S3) team was debugging
an issue causing the S3 billing system to progress more slowly than expected. At 9:37AM PST, an authorized S3 team
member using an established playbook executed a command which was intended to remove a small number of servers
for one of the S3 subsystems that is used by the S3 billing process. Unfortunately, one of the inputs to the command
was entered incorrectly and a larger set of servers was removed than intended. The servers that were inadvertently
removed supported two other S3 subsystems. One of these subsystems, the index subsystem, manages the metadata
and location information of all S3 objects in the region. This subsystem is necessary to serve all GET, LIST, PUT, and
DELETE requests. The second subsystem, the placement subsystem, manages allocation of new storage and requires
the index subsystem to be functioning properly to correctly operate. The placement subsystem is used during PUT
requests to allocate storage for new objects. Removing a significant portion of the capacity caused each of these
systems to require a full restart. While these subsystems were being restarted, S3 was unable to service requests.
Other AWS services in the US-EAST-1 Region that rely on S3 for storage, including the S3 console, Amazon Elastic
Compute Cloud (EC2) new instance launches, Amazon Elastic Block Store (EBS) volumes (when data was needed from
a S3 snapshot), and AWS Lambda were also impacted while the S3 APIs were unavailable.

Whither microservices? wJoyent

* Microservices have yielded simpler components — but more
complicated systems

* ...and open source has allowed us to deploy many more
Kinds of software components, increasing complexity again

» As abstractions become more robust, failures become rare,
but arguably more acute: service outage is more likely due to
cascading failure in which there is not one bug but several

* That these failures may be in discrete software services
makes understanding the system very difficult...

The Microservices Complexity Paradox ©Joyent

.y Honest Status Page
&8 @honest_update

Following Vv

We replaced our monolith with micro services

SO that every outage could be more like a
murder mystery.

RETWEETS LIKES = | -
2,923 2,319 ﬁ & g (¥

4:10 PM - 7 Oct 2015

The Microservices Complexity Paradox ©Joyent

.y Honest Status Page
&8 @honest_update

Following Vv

We replaced our monolith with micro services
SO that every outage could be more like a
~rysters an active shooter

RETWEETS LIKES

2,923 2,319

4:10 PM - 7 Oct 2015

An even more apt metaphor

A mechanical distributed system ©Joyent

REACTOR BUILDING (CONTAINMENT)

AUXILIARY
- COOLING TOWER

Stack

= (7)) Pilot-operated
= Safety valve @ relief valve (9
4 5 Ventilation filters (®) Block valve
AAAA Waste gas (9) Pressurizer TURBINE BUILDING
decay tank Steam
Waste gas compressor | generator
Vent header 21)
_ = =), Turbine AA
Vent valve > High Wl] __ Generator . Transformer
pressure 10 M
injection () . .

Makeup tank | purnp Condensor (12 e ——— e [e g
MAAA 115\ Block Condensatell Condensate
) [l’_i_. = @) vaive 1P storage tank Cirw{:ting
. Muetdoen b =7 Demineralizer "1 |i~pump

Borated wate
storage tank

Radiation waste

storage tank Emergency feedwater pump

Rupture disk . Reactor coolant pump Hot leg Adapted from "SPECTRUM, A special report *, November, 1979
BALAR: PLATE:L THL3,/TLANT SrmamAT Cold I.g SIIMP pump Copyright © 1979 by the Institute of Electrical and Electronics Engineers, Inc,

But... but... alerts and monitoring! ©Joyent

“It is a difficult thing to look at a winking light on a board,
or hear a peeping alarm — let alone several of them —
and immediately draw any sort of rational picture of
something happening”

— Nuclear Regulatory Commission’s Special Report
on incident at Three Mile Island

The debugging imperative wJoyent

* We suffer from many of the same problems as nuclear power
in the 1970s: we are delivering systems that we think can't fail

* |n particular, distributed systems are vulnerable to software
defects — we must be able to debug them in production

* What does it mean to develop software to be debugged?

* Prompts a deeper question: how do we debug, anyway?

Debugging in the abstract wJoyent

* Debugging is the process by which we understand
pathological behavior in a software system

* |t is not unlike the process by which we understand the
behavior of a natural system — a process we call science

* Reasoning about the natural world can be very difficult:
experiments are expensive and even observations can be

very difficult

* Physical science is hypothesis-centric

The exceptionalism of software wJoyent

» Software is entirely synthetic — it is mathematical machine!

* The conclusions of software debugging are often
mathematical in their unequivocal power!

» Software is so distilled and pure — experiments are so cheap
and observation so limitless — that we can structure our
reasoning about it differently

* We can understand software by simply observing it

The art of debugging wJoyent

* The art of debugging isn’t to guess the answer — itis to be
able to ask the right questions to know how to answer them

* Answered questions are facts, not hypotheses
» Facts form constraints on future questions and hypotheses

* As facts beget questions which beget observations and more
facts, hypotheses become more tightly constrained — like a
cordon being cinched around the truth

The craft of debuggable software v Joyent

* The essence of debugging is asking and answering questions
— and the craft of writing debuggable software is allowing the
software to be able to answer questions about itself

* This takes many forms:
» Designing for postmortem debuggabillity
» Designing for in situ instrumentation

» Designing for post hoc debugging

A culture of debugging wJoyent

* Debugging must be viewed as the process by which systems
are understood and improved, not merely as the process by
which bugs are made to go away!

* Too often, we have found that beneath innocent wisps of
smoke lurk raging coal infernos

* Engineers must be empowered to understand anomalies!

* Engineers must be empowered to take the extra time to build
for debuggability — we must be secure in the knowledge that
this pays later dividends!

Debugging during an outage wJoyent

* When systems are down, there is a natural tension: do we
optimize for recovery or understanding?

» “Can we resume service without losing information?”

» “What degree of service can we resume with minimal loss
of information?”

» Overemphasizing recovery with respect to understanding may
leave the problem undebugged or (worse) exacerbate the
problem with a destructive but unrelated action

The peril of overemphasizing recovery wJoyent

* Recovery in lieu of understanding normalizes broken software

* |f it becomes culturally engrained, the dubious principle of
software recovery has toxic corollaries, e.g.:

- Software should tolerate bad input (viz. “npm isntall”)

» Software should “recover” from fatal failures (uncaught
exceptions, segmentation violations, etc.)

» Software should not assert the correctness of its state

* These anti-patterns impede debuggability!

Debugging after an outage wJoyent

 After an outage, we must debug to complete understanding

* |In mature systems, we can expect cascading failures —
which can be exhausting to fully unwind

* |t will be (very!) tempting after an outage to simply move on,
but every service failure (outage-inducing or not) represents
an opportunity to advance understanding

» Software engineers must be encouraged to understand their
own failures to encourage designing for debuggability

Enshrining debuggability wJoyent

* Designing for debuggability effects true software robustness:
differentiating operational failure from programmatic ones

» Operational failures should be handled; programmatic failures
should be debugged

* |ronically, the more software is designed for debuggability the
less you will need to debug it — and the more you will
leverage it to debug the software that surrounds it

Debugging under fire wJoyent

* |t will always be stressful to debug a service that is down

* When a service is down, we must balance the need to restore
service with the need to debug it

» Missteps can be costly; taking time to huddle and think can
yield a better, safer path to recovery and root-cause

* |In massive outages, parallelize by having teams take different
avenues of investigation

* Viewing outages as opportunities for understanding allows us
to develop software cultures that value debuggability!

Hungry for more? wJoyent

* |f you are the kind of software engineer who values
debuggability — and loves debugging — Joyent is hiring!

» If you have not yet hit your Cantrillian LD50, | will be joining
Brigit Kromhout, Andrew Clay Shafer, Matt Stratton as “Old

Geeks Shout At Cloud”
* Thank you!

