
Debugging under fire 
Keeping your head when  
systems have lost their mind

CTO

bryan@joyent.com

Bryan Cantrill

@bcantrill

mailto:rod@joyent.com?subject=


The genesis of an outage



“Please don’t be me, please don’t be me”



“…doesn’t begin to describe it”



“WHEE!”



“Fat-finger”?

• Not just a “fat-finger”; even this relatively simple failure reflected 
deeper complexities: 
 
 
 
 
 
 
 

• Outage was instructive — and lucky — on many levels…



It could have been much worse!

• The (open source!) software stack that we have developed to 
run our public cloud, Triton, is a complicated distributed system

• Compute nodes are PXE booted from the headnode with a 
RAM-resident platform image

• It seemed entire conceivable that the services needed to boot 
compute nodes would not be able to start because a compute 
node could not boot…

• This was a condition we had tested, but at nowhere near the 
scale — this was a failure that we hadn’t anticipated!



How did we get here?

• Software is increasingly delivered as part of a service

• Software configuration, deployment and management is 
increasingly automated

• But automation is not total: humans are still in the loop, even 
if only developing software

• Semi-automated systems are fraught with peril: the arrogance 
and power of automation — but with human fallibility



Human fallibility in semi-automated systems



Human fallibility in semi-automated systems



Whither microservices?

• Microservices have yielded simpler components — but more 
complicated systems

• …and open source has allowed us to deploy many more 
kinds of software components, increasing complexity again 

• As abstractions become more robust, failures become rare, 
but arguably more acute: service outage is more likely due to 
cascading failure in which there is not one bug but several

• That these failures may be in discrete software services 
makes understanding the system very difficult…



The Microservices Complexity Paradox



The Microservices Complexity Paradox

an active shooter



Modern software failure modes



An even more apt metaphor



A mechanical distributed system



But… but… alerts and monitoring!

 
“It is a difficult thing to look at a winking light on a board, 
or hear a peeping alarm — let alone several of them — 
and immediately draw any sort of rational picture of 
something happening” 

— Nuclear Regulatory Commission’s Special Report 
on incident at Three Mile Island



The debugging imperative

• We suffer from many of the same problems as nuclear power 
in the 1970s: we are delivering systems that we think can’t fail

• In particular, distributed systems are vulnerable to software 
defects — we must be able to debug them in production

• What does it mean to develop software to be debugged?

• Prompts a deeper question: how do we debug, anyway?



Debugging in the abstract

• Debugging is the process by which we understand 
pathological behavior in a software system

• It is not unlike the process by which we understand the 
behavior of a natural system — a process we call science

• Reasoning about the natural world can be very difficult: 
experiments are expensive and even observations can be 
very difficult

• Physical science is hypothesis-centric



The exceptionalism of software

• Software is entirely synthetic — it is mathematical machine!

• The conclusions of software debugging are often 
mathematical in their unequivocal power!

• Software is so distilled and pure — experiments are so cheap 
and observation so limitless — that we can structure our 
reasoning about it differently

• We can understand software by simply observing it



The art of debugging

• The art of debugging isn’t to guess the answer — it is to be 
able to ask the right questions to know how to answer them

• Answered questions are facts, not hypotheses

• Facts form constraints on future questions and hypotheses

• As facts beget questions which beget observations and more 
facts, hypotheses become more tightly constrained — like a 
cordon being cinched around the truth



The craft of debuggable software

• The essence of debugging is asking and answering questions 
— and the craft of writing debuggable software is allowing the 
software to be able to answer questions about itself

• This takes many forms:

• Designing for postmortem debuggability

• Designing for in situ instrumentation

• Designing for post hoc debugging



A culture of debugging

• Debugging must be viewed as the process by which systems 
are understood and improved, not merely as the process by 
which bugs are made to go away!

• Too often, we have found that beneath innocent wisps of 
smoke lurk raging coal infernos

• Engineers must be empowered to understand anomalies!

• Engineers must be empowered to take the extra time to build 
for debuggability — we must be secure in the knowledge that 
this pays later dividends!



Debugging during an outage

• When systems are down, there is a natural tension: do we 
optimize for recovery or understanding?

• “Can we resume service without losing information?”

• “What degree of service can we resume with minimal loss 
of information?”

• Overemphasizing recovery with respect to understanding may 
leave the problem undebugged or (worse) exacerbate the 
problem with a destructive but unrelated action



The peril of overemphasizing recovery

• Recovery in lieu of understanding normalizes broken software

• If it becomes culturally engrained, the dubious principle of 
software recovery has toxic corollaries, e.g.:

• Software should tolerate bad input (viz. “npm isntall”)

• Software should “recover” from fatal failures (uncaught 
exceptions, segmentation violations, etc.)

• Software should not assert the correctness of its state

• These anti-patterns impede debuggability!



Debugging after an outage

• After an outage, we must debug to complete understanding

• In mature systems, we can expect cascading failures — 
which can be exhausting to fully unwind

• It will be (very!) tempting after an outage to simply move on, 
but every service failure (outage-inducing or not) represents 
an opportunity to advance understanding

• Software engineers must be encouraged to understand their 
own failures to encourage designing for debuggability



Enshrining debuggability

• Designing for debuggability effects true software robustness: 
differentiating operational failure from programmatic ones

• Operational failures should be handled; programmatic failures 
should be debugged

• Ironically, the more software is designed for debuggability the 
less you will need to debug it — and the more you will 
leverage it to debug the software that surrounds it



Debugging under fire

• It will always be stressful to debug a service that is down

• When a service is down, we must balance the need to restore 
service with the need to debug it

• Missteps can be costly; taking time to huddle and think can 
yield a better, safer path to recovery and root-cause

• In massive outages, parallelize by having teams take different 
avenues of investigation

• Viewing outages as opportunities for understanding allows us 
to develop software cultures that value debuggability!



Hungry for more?

• If you are the kind of software engineer who values 
debuggability — and loves debugging — Joyent is hiring!

• If you have not yet hit your Cantrillian LD50, I will be joining 
Brigit Kromhout, Andrew Clay Shafer, Matt Stratton as “Old 
Geeks Shout At Cloud”

• Thank you!


